navy logo
Products
research core
Long form survey icon
Long-Form Surveys
Run foundational surveys with depth and rigor.
ai recommendations icon
AI Insights
AI synthesizes results into themes, patterns, and insights.
digital experience
survey icon
In-Product Surveys
Capture context-rich feedback during real product use.
feedback icon
Feedback
Collect always-on, open feedback across the user journey.
digital Behavior
replays icon
Replays
Observe real user sessions to uncover friction and behaviors.
heatmaps icon
Heatmaps
Visualize clicks and scrolls to reveal engagement patterns.
Features
integrations
Integrations
mobile icon
Mobile
star icon
AI Analysis
magic pencil icon
AI Study Creator
dashboards icon
Dashboards
Solutions
by Use Case
continuously optimize icon
Measure experiences
Measure sentiment across customer journeys to see shifts over time.
solve pain points icon
Uncover unmet needs
Identify unmet needs and pain points across journeys.
improve conversion icon
Evaluate features
Test usability, reveal friction, and observe interactions at scale.
save time and resources icon
Guide product direction
Synthesize findings into clear insights that inform priorities.
by TEAM
uxr icon
User Research
Maximize the speed and impact of your research
Design
Validate and get buy-in for designs with real user insights
pm icon
Product Management
marketing
Marketing
code icon
Engineering
star icon
Customer Experience
Templates
A survey prompt asking a user to describe how they heard about a feature
Long-Form Survey
Feature Adoption (core UX impact)
View Template
arrow icon
A popup survey asking how much a user likes the concept
Long-Form Survey
Monadic Concept Test
View Template
arrow icon
A survey prompt about product services
Long-Form Survey
Pricing Model (Van Westendorp)
View Template
arrow icon
templates
Template Gallery
Discover how our team and community use Sprig templates to inform product development.
View All
arrow icon
Customers
A man looking at Notion on his laptopNotion logo
Notion surfaced 412 content opportunities and improved CSAT with Sprig
Read Now
arrow icon
coinbase nav photocoinbase left logo
Coinbase uncovered core feature painpoints with targeted in-product surveys
Read Now
arrow icon
ramp nav imageramp logo
Ramp created customer-centric products with Sprig AI
Read Now
arrow icon
users icon
Meet our Customers
Learn how top companies leverage Sprig user insights to boost conversion, reduce churn, improve onboarding, and more.
View All
arrow icon
Resources
blog icon
Blog
Perspectives on balancing research craft with AI to deliver faster insights.
event icon
Events & Webinars
Learn from past Sprig events & register for upcoming ones
help center icon
Help Center
Explore our knowledge hub to get started
in Sprig
video tutorial icon
Video Tutorials
Get a crash course in Sprig with our guided
video series
A survey chatbot
Long Form Surveys, Reimagined
Read Now
arrow icon
Pricing
Sign In
Book a Demo
navy logo
hamburger menu iconclose icon
Products
caret icon
Products
Long form survey icon
Long-Form Surveys
survey icon
In-Product Surveys
feedback icon
Feedback
replays icon
Replays
heatmaps icon
Heatmaps
ai recommendations icon
AI Insights
Features
integrations
Integrations
mobile icon
Mobile
star icon
AI Analysis
magic pencil icon
AI Study Creator
dashboards icon
Dashboards
Solutions
caret icon
By Use case
continuously optimize icon
Measure experiences
solve pain points icon
Uncover user needs
improve conversion icon
Evaluate features
save time and resources icon
Guide product direction
By TEAM
uxr icon
User Research
Design
pm icon
Product Management
marketing
Marketing
code icon
Engineering
star icon
Customer Experience
Templates
Customers
Resources
caret icon
blog icon
Blog
event icon
Events & Webinars
help center icon
Help Center
video tutorial icon
Video Tutorials
Enterprise
Pricing
Sign InGet Started Free
Blogarrow icon
Thought Leadership
arrow icon
UXR Predictions for 2026: What Research Leaders Are Learning as AI Scales
Thought Leadership

UXR Predictions for 2026: What Research Leaders Are Learning as AI Scales

Written by Karen Eisenhauer | Feb 05, 2026

February 5, 2026

UXR Predictions for 2026: What Research Leaders Are Learning as AI Scales

If you lead a UX research team right now, you can probably feel it.

Not just the pace of change, but the shift in responsibility. AI has moved from something teams are experimenting with to something they are actively building around, becoming a powerful accelerant for research teams when applied thoughtfully. The questions research leaders are fielding are no longer about whether AI belongs in the workflow, but about how to use it responsibly, scale it without losing rigor, and help the rest of the organization get more value from what it produces.

At Sprig’s recent Research Leaders Roundtable on UXR predictions for 2026, we heard from senior research leaders navigating this transition in real time. Across industries and team sizes, the themes were remarkably consistent. As one leader put it, “AI is speeding things up, but it hasn’t made the hard decisions any easier.” The craft is evolving, but the core of research still matters.

Below are the key patterns that emerged and what they signal for UX research teams heading into the year ahead.

AI Is No Longer Experimental 

Nearly half of the teams at the roundtable reported using AI consistently across multiple phases of the research workflow. I love how one research leader described it: “We’re past trying it out. Now we’re figuring out how to live with it.” Drafting discussion guides, synthesizing early themes, pressure testing surveys, and summarizing findings are no longer fringe use cases. They are becoming standard practice.

At the same time, most teams are still figuring out what scale actually looks like. The million dollar question has become, how do we scale and increase our speed, but maintain trust in our craft? Leaders noted that while we have figured out how to create more artifacts, not all of them are trusted (or worthy of trust, for that matter). It turns out that while AI may speed up parts of the process and unlock new efficiencies, it doesn’t automatically increase clarity of insight – at least not without a strong guiding hand. Or, as one research leader put it: “trust is still earned, not automated.”

However, the takeaway was not that teams should slow down adoption. On the contrary, many emphasized that when AI was paired with strong research fundamentals and oversight, it was in fact delivering meaningful value. My takeaway was that research leaders are increasingly responsible for shaping how AI fits into the craft. We must be the authority on where it accelerates the work, and where human judgment must stay firmly at the helm.

Quality Control Is Becoming the Defining Responsibility

As AI use increases, quality has become the most persistent and urgent concern. It’s not because AI is ineffective, but because it amplifies both good and bad research practices – and does so with equal amounts of confidence. One leader summed it up bluntly: “Polished output is not the same as good insight.” For research leaders, protecting against this erosion of quality is quickly becoming central to the role.

The question becomes, how do we tell the difference between great accelerated insights and polished slop? And how do we communicate the difference to our stakeholders?

Leaders with high AI adoption are already developing strategies to keep verification and strong data integrity at the forefront of AI-centered research. One leader discussed the revision of their team workflows to include mandatory human verification and revision, allowing for AI usage while putting in new guardrails into their process. 

Another described how they used multiple AI tools on the same analysis, allowing for a kind of cross-check that exposed potential hallucinations or outliers. Several others have been building prompt libraries for their researchers to use to ensure output of maximum quality without reinventing workflows on the fly.

The group clearly agreed on one thing. AI can meaningfully support the work of research teams, extending their reach and speed, but it cannot replace the fundamentals of good research. Judgment, context, and synthesis still matter, especially when the cost of getting it wrong is high.

The Researcher Role Is Shifting From Execution to Stewardship

A final theme that really stood out to me was the changing role of research as AI becomes accessible across organizations. AI empowers non-researchers to generate insights at high levels of speed and autonomy. This has huge potential for research impact, but also presents a major challenge for researchers as they try to wrangle newly super-charged democratization efforts. 

The result is that researchers are spending less time running every study themselves and more time guiding others through the AI-enabled research process.

That shift brings new responsibilities. Helping stakeholders understand when AI-generated insights are directional versus decision-ready. Setting guardrails so teams know how to use research outputs responsibly. Supporting new formats for insight consumption, from short summaries to audio or AI-assisted briefings, without losing substance.

Several leaders described carving out intentional time for experimentation, not just with tools, but with how insights travel. One researcher shared that they now ask, “Where will this actually get used?” before deciding how to package findings. Where do decisions actually happen? What formats get used? What signals are being ignored?

In this environment, impact is less about volume of studies and more about influence. The value of research shows up in better bets made earlier, bad ideas stopped sooner, and teams moving with more confidence.

What to Carry Forward Into 2026

The conversation made one thing clear: The biggest risk is not adopting AI too slowly. It is adopting it without care for the craft that gives research its value.

As teams head into 2026, research leaders are being asked to do more than generate insights. They are being asked to ensure AI is used as a force multiplier for learning, not a shortcut around it. They are being asked to shape how organizations learn. To balance speed with accuracy. To protect quality while enabling scale. And to help teams trust what they are building on.

Objectives will continue to change. The expectations will continue to rise. But the foundation of strong research remains the same, and AI works best when it is built on that foundation rather than layered on top of it. 

If there is one prediction to hold onto, it is this. UX research will continue to evolve, but its influence will depend on leaders who are willing to steward both the technology and the craft with equal care.

Continuing the Conversation

If these themes resonate with challenges you are navigating this year, Sprig regularly hosts Research Leaders Roundtables to explore how teams are adapting their practice. Join me at our upcoming session to connect with peers and continue the conversation.

Sprig Research Leaders Roundtable: Evolving UX Research Into a Center of Impact

February 24, 2026 | 11:00 AM PST / 2:00 PM EST 

Key themes we will cover: 

  • Moving research upstream as a strategic input, not a downstream validator
  • Keeping insights alive beyond decks and reports
  • Connecting UX research to real business outcomes
  • AI as an accelerator of craft, not a replacement for judgment

Register here →

‍

Sign up for our newsletter

Actionable insights on faster research and better experiences, straight to your inbox.

linkedin icontwitter aka X icon

Written by

UXR Predictions for 2026: What Research Leaders Are Learning as AI Scales

Karen Eisenhauer

Karen Eisenhauer is a researcher and published author specializing in remote-forward UX methods. She has 8 years of experience bringing mixed-methods insights to organizations like Meta, Google, and more.

Related Articles

The Ground is Moving: What Research Leaders Told Us About Surviving (and Thriving) in 2025
Thought Leadership
Dec 9, 2025

The Ground is Moving: What Research Leaders Told Us About Surviving (and Thriving) in 2025

From Artifacts to Activation
Thought Leadership
Dec 3, 2025

From Artifacts to Activation

User Flows and User Journeys: You Need Both
Thought Leadership
Nov 18, 2025

User Flows and User Journeys: You Need Both

Sprig logo
Products
Long-Form Surveys
In-Product Surveys
Feedback
Replays
Heatmaps
AI Insights
Features
Integrations
Mobile
AI Study Creator
Dashboards
AI Analysis
Security Standards
Solutions
BY use case
Measure Experiences
Evaluate Features
Uncover Customer Needs
Influence Product Direction
BY TEAM
User Research
Design
Product Management
Marketing
Engineering
Customer Experience
Templates
Customers
Resources
Blog
Events & Webinars
Help Center
Video Tutorials
Session Replay Guide
Pricing
Enterprise
Company
About Us
Careers
Sprig Service Agreement
Privacy Policy
Data Processing Addendum
Status
Compare
vs Qualtrics
vs Medallia
vs Hotjar
Copyright 2026 Sprig, All Rights Reserved
Linkedin icontwitter aka X icon